
Linear wave equations as motions on a Toda lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 91

(http://iopscience.iop.org/0305-4470/20/1/018)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 14:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 20 (1987) 91-102. Printed in the U K  

Linear wave equations as motions on a Toda lattice 

R J Torrence 
Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada 
T2N IN4 

Received 7 January 1986 

Abstract. A bijection is defined from the set of motions on the infinite Toda lattice of 
strings to a set of sequences of linear wave equations in 1 + 1 dimensions, the sequences 
being generated by a generalisation of the classical Darboux map. The bijection is applied 
to find probably all such wave equations for which characteristic initial data propagate 
without spreading. 

1. Introduction 

We shall construct a fruitful correspondence between the set of motions of a particular 
non-linear dynamical system involving exponential interactions and the set of linear 
second-order wave equations in 1 + 1 dimensions ( LSWE). The non-linear system in 
question is the generalisation of the infinite Toda (1981) lattice wherein Toda's system 
of second-order non-linear ordinary differential equations in time becomes a system 
of non-linear wave equations in 1 + 1 dimensions (see Leznov and Saveliev 1981). We 
will refer to this system as the infinite Toda lattice of stringst. The correspondence 
will be based on a related pair of bijections E :  M + W, B :  M + W, where M is the set 
of motions of the Toda lattice of strings. To define W and we will first put the 
LSWE into either one of two normal forms, thus reducing LSWE to either one of two 
subsets WE, WE, and then define W and W to be certain sets of sequences in WE 
and WE, respectively. The sequences will be constructed from a generalisation to 
wave equations of the classical Darboux (1882) (see Levi et a1 (1984) for a current 
reference) transformation between Schrodinger equations. The usefulness of B : M + 

W, B :  M -+ W rests on the fact that a great deal is known about the motions of the 
various types of Toda lattices, on the one hand, and about linear wave equations in 
1 + 1 dimensions, on the other, and that known results about a subset of either set may 
map by B (  E), or  B - ' (  B - ' ) ,  into new results about a subset of the other. 

The focus of this paper will be the application of B and B to obtain the complete 
solution of an interesting question regarding linear wave equations posed by Kundt 
and Newman (1968, hereafter referred to as K N )  by showing it to be the image under 
B (or B )  of a solved problem concerning the Toda lattice of strings. The unanswered 
question concerns the characterisation of those LSWE that possess the characteristic 
propagation property ( CPP).  This means, briefly, that characteristic initial data generate 
a field whose support is restricted to field points connected by unbroken characteristics 
to the support of the initial data. It was shown in K N  that a sufficient, and probably 

t This seems to us preferable to calling it the two-dimensional Toda lattice, as is commonly done, since the 
latter has an obvious alternative interpretation. 
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92 R J Torrence 

necessary, condition for the CPP is the 'double termination' of the 'substitution sequence' 
generated by the coefficients of the wave equation. It is shown in this paper that the 
subset of LSWE with doubly terminating substitution sequences is mapped by B- '  and 
B - ' ,  in two different ways, to precisely the set of motions of finite Toda lattices of 
strings with both end strings free. This system can be viewed as a special case of the 
infinite Toda lattice of strings. Since Leznov and Saveliev have given closed form 
expressions for the general motion of this special system, we are able to write down 
explicit formulae for the coefficients of all the LSWE with doubly terminating substitution 
sequences, and thus of probably all LSWE with the CPP. Of no less interest is the fact 
that the general solutions of this class of LSWE can be given in a simple closed form 
and that we may in a sense have constructed all LSWE with this attractive property. 

We will briefly review relevant results concerning the infinite Toda lattice of strings 
and the Kundt-Newman substitution sequences in §§2  and 3, respectively. In  §4, 
B : M + W, l? : M + W will be defined, and they will be applied in 9 5 to the construction 
of the LSWE with doubly terminating substitution sequences. In 9 6 we will extract the 
subset of self-adjoint LSWE with this property and describe the corresponding subset 
of motions of the Toda lattice of strings. This special case has already been dealt with, 
without reference to the Toda lattice, by Torrence (1986). The content of § 2 is strictly 
a recapitulation of known results, while 9 3 contains some mildly original elements. 
The result of § 4 seems to be entirely new and, while formal in nature, joins two 
ostensibly independent mathematical structures in what promises to be a productive 
partnership. As evidence for this claim, the application in 9 5 appears to give a complete 
solution to a natural, and hitherto unsolved, problem. In § 6 known results are related 
to the new ones presented in § 5 .  There is a concluding 0 7. 

2. Toda lattices of strings 

The infinite Toda lattice is generally pictured as an  infinite set of particles distributed 
along a straight line and experiencing longitudinal oscillations under a nearest-neigh- 
bour interaction of exponential form. If we denote the displacement, however viewed, 
of the nth particle by y,, it is easy to see that the equation of motion for that particle, 
of mass m n ,  is given by 

-CC < n < +a (2.1) 
d2  

m n g  yn = @ ' ( Y n +  1 - yn 1 - @'(Vn - yn - 1 ) 

CP(x) = e-' (2.2) 

where CP is the potential for the nearest-neighbour interaction. Assuming that 

corresponding to repulsive exponential forces, putting mn = 1 for all n and denoting 
the relative displacement by rn ~ y , + ~  - y n ,  we find that the injnite Toda lattice is 
governed by the infinite system of non-linear ordinary differential equations 

d2  
d t 2  
- = K, (2.3) 
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K N - l =  

93 

r 2  - 1  0 
- 1  2 - 1  0 

0 - 1  2 - 1  0 
a . .  

0 - 1  2 -1  0 
0 - 1  2 - 1  

- 0 - 1  2 

where 

. . .  1 K ,  = 

0 L1 ' 2  1 1  '0  * . .  
. .  0 - 1  2 -1  0 . .  

. . .  0 - 1  2 - 1  0 . .  
(2.4) 

Other types of Toda lattice such as the periodic lattice and the finite lattice with ends 
free, or fixed, can be usefully seen as special cases of (2.3), and we will consider one 
of these specialisations in a more general context in what follows. 

The extensive study of the Toda lattice has spawned a variety of generalisations, 
one of which is central to this paper. Imagine each particle of the lattice to be extended 
into a stretched string, orthogonal to the original array, with the strings experiencing 
a transverse oscillation in the plane of the new array and subject to a nearest-neighbour 
exponential coupling. A motion of this system comprises waves on each of the stretched 
strings. The generalisation of (2.1) appropriate to this case is 

(2 .5)  

where @ is given by (2.2) and the y, now depend on the two (characteristic) coordinates 
U and U. The system of partial differential equations governing this infinite Toda lattice 

Jtd, = - @ ' ( y n + ,  - y n ) + @ ' ( y n  - & - I )  -CC < n < +m 

of strings is 

JL 

where K ,  is as before. Of particular interest for our work is a specialisation of (2.6). 
We can obtain a jn i t e  Toda lattice of strings with end strings free by assuming 
- y o = y N + ,  =+CO in (2.5), thus forcing the interaction from the left (right) of y ,  ( y N )  
to zero, so that y ,  and y N  become free end strings. The relative displacements 
r , ,  . . . , r N - ,  are governed by a double truncation of (2.6): 

(2.7) 

(2.8) 
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Given a solution of (2.7), the extraction of the displacements y , , .  . . , y ,  can be 
accomplished by solving the first of (2.5): 

 at,^, = exp(-r,)  (2.9) 
for y , ,  and then obtaining y,, y,, etc, from y ,  and r,, r2, etc. 

The application, in 9 4, of the bijections B :  M += W and E :  M += Li' involves the 
specialisation just discussed, the finite Toda lattice with free end strings. We shall 
need the remarkable formulae obtained by Leznov and  Saveliev that give the general 
solution of this integrable non-linear dynamical system for any number of strings. We 
shall not concern ourselves with the derivation of their results, but just state what we 
shall need later. The non-trivial part of the problem is to obtain a solution of (2.7) 
containing 2 N - 2 arbitrary single-valued functions; solving (2.9) is then clearly trivial 
and brings the total number of arbitrary one-variable functions to the required 2 N, 
for the system of N second-order equations for y , ,  . . . , y,. We first define 

[ ]=-Kkl-,[ ] (2.10) 
r N - l  rN - 1 

and it is easy to see that (2.7) is equivalent to 

(2.1 1) 

where 7 stands for the vector with components T , ,  . . . , T,-,. It is (2.11) with which 
Leznov and  Saveliev chose to work. In the simplest case, N = 2, (2.1 1 )  reduces to 

 at,.^, = e ~ p ( 2 . r ~ )  (2.12) 

the familiar Liouville equation, whose general solution is easily confirmed to be given 
by 

(2.13) 

In order to write down the generalisation of (2.13) for arbitrary N we define 

x x u  

(2.14) 
. . .  

x n - I  
U,.." xLT.:;, . . .  

Leznov and  Saveliev have shown that 

exp(-T,) = ( - l ) n ( n - ' j ' *  A n [ X N - l ( u ,  U)] n = 1,2,  . . . , N - 1 
yields the general solution of (2.11), where 

exp(-.r,) = X N - ,  

(2.15) 
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x[(D;- I (u)cp,N-2(u)  * * .  (D,-1(U)(DI"-'(o)(D,N-2(v) * .  * (D,-l(u)l-l'N. 

(2.16) 

Inverting (2.10) we obtain for the general solution of (2.7) 

(2.17) 

exp( r N  - 1 ) = - ( A N  - 1XN - 1 12 /  A N - J N -  1. 

Combined with (2.9), (2.17) gives us the general y , ,  . . . , y ,  for the Toda lattice of N 
strings, with both end strings free. We can actually obtain explicit formulae for the 
y , ,  . . . , y, without much difficulty. The definitions of r,  and (2.17) are consistent with 
the formulae 

exp(-yl) = -AIXN-I/AOXN-I 

exp( -Yn ) = ( - 1  ) ,AnXN- I /  A n  - I XN - I (2.18) 

exp( -yN = ( - 1  ANX, - 1 / A N  - I XN - 1 

where ANXN-l = AoXN_ I = 1 and AIXN-I = XN-, from (2.14). A direct check confirms 
that (2.18) satisfies (2.9), so we have a solution of (2.7) and (2.9). It is not the general 
solution, as XN-I defined by (2.16) has only 2 N - 2  arbitrary functions, but this is 
easily remedied. The system (2.16) is easily shown to be invariant in form if we 
simultaneously perform the transformations 

du ' l du  = o ( u )  dv ' ldv  = v ( v )  

~XP(Y; )  = ( Uv)" exp(y,) n = l ,  . . . ,  N. 
(2.19) 

In this way two additional functions can be introduced to obtain the general solution 

~ X P ( Y  I )  - [(DO( 1 cLo( u)IAoXN-I/AIXN-I 

exp(y, ) = (-  1 )  [(Do( )cLo( U)] A N -  I XN- Il ANXN-I 
of (2.7) and (2.9). 

Some comments regarding the solving of (2.5), (2.7) and (2.9) are in order. From 
the point of view of a dynamical system it is natural to ask for a solution of the 
governing equations satisfying prescribed initial conditions. Even with (2.7) and (2.9), 
where we have the general solution (2.20), it is by no means easy to find the connection 
between the arbitrary functions in that general solution and given initial conditions. 
With ( 2 . 5 ) ,  the situation regarding initial conditions is even less clear. Fortunately the 
dynamically natural problem is secondary to our  interest and need not concern us. 
Suppose instead that we wish to find a solution of (2.5) consistent with the prescribed 
behaviour of some triple y,-l(u, v ) ,  y,(u, U), Y , , + ~ ( U ,  U). Clearly (2.5) will generate, 
from the given information, the full sequence { y , / n  E 2)  and we are done. This will 
be the proper attitude toward the system (2.5) in the context of 0 4. With the finite 
system governed by (2.7) and (2.9) the situation is a bit different. The end conditions 
limit our freedom to specify y,. On the other hand, (2.20) has provided us with the 
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general solution. This important special case, which we will see corresponds to doubly 
terminating substitution sequences, is the topic in § 6 .  

3. Substitution sequences and characteristic propagation 

It was shown in K N  that by using a general coordinate transformation and a factor 
transformation on the dependent variable we may put every element of LSWE into 
either right normal form 

(3.1R) {a ,k(u ,  u ) a ,  - l ( U ,  U)}*(% U )  = o  
or left normal form 

{a&( U, v )  d, - T( U, U)}*( U, v )  = 0. (3.1L) 

We will let WE and represent the sets of right and left normal form wave equations, 
respectively. Following K N ,  we introduce a generalisation to the wave equations in 
WE and of the classical Darboux map. Given an element of WE suppose we 
put j o  = k, j ,  3 1, & = I,!I and define j 2 ,  $, by 

j, =ji[(ji/jo) -aL,, lnljlll &(jICLl) =jlCLo. 

It is not hard to confirm (see K N  for details) that (a,j,d, -j,)t,bo = 0 is equivalent to 
(au j la ,  - j 2 ) G I  = 0. More generally, if we inductively define {jJn E Z }  and {+,ln E Z }  by 

(3.2R) j n + l / j n  = ( j n / j n - l )  -at, lnIjnI a u ( j n t , b n  ) = j n C L n  - 1 

it follows that 

( a  j o  - j l )  CL0 = 0 e ( a  J n  a, - j ,  + 1 1 CL, = 0 (3.3R) 

for all integers n, including those less than 0. Following a similar, but not identical, 
pattern for WE, we define sequences {j,ln E Z} ,  {&,In E Z }  by putting jo = k; j - ,  = ( 
J0= IC, and replacing (3.2R) by 

(3.2L) jn-l/Jn = (Tn/Jn+l)-aL lnIJfll a u ( j n & n  = j n & n  + 1 

and it follows that 

(a,Joa, -j-l)t,io = 0e(auT,  a ,  -j,-J&, = 0 (3.3L) 

for all integers n. 
We have now defined related sequences of j,, 9, and (equivalent) wave equations 

w, in WE, and of j,, @,, and (equivalent) wave equations R,, in E. We can (and 
will) arrange the indexing so that 

(3.4R) 

(3.4L) 

In the case where j ,  = 0 for some N > 0 (l/j,  = 0 for some M < 0) we see that the 
generation of j ,  must terminate to the right (left), while if j N  = 0, for some N < O  
(I/?,, = 0 for some M > 0), the generation of T,, must terminate to the left (right), and  
similarly for the sequences of wave equations. Double termination, resulting in finite 
sequences, is a possibility that will particularly interest us in § 4. We will refer to the 
sequences { j n l n  E Z }  and { w,ln E Z} ,  terminating or not, as right substitution sequences, 
and to those of the form { j J n  E Z} ,  {+,,In E Z }  as left substitution sequences. It will 
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be convenient to denote the collections of all such sequences by J and W, and 7 and 
W, respectively, and i t  is clear that W and W are in fact partitions of WE and WE. 
It is natural to think of a sequence in W, or W, as being generated by wo, or W O ,  but 
it is easy to see that a sequence is equally well generated by any one of its members. 
Thus no special significance should be attributed to the index 0. In any case, where 
a particular element in a sequence is of special significance we may indicate this by 
denoting it by wo, or WO (or j,, or yo) but there is no natural candidate for this honour 
in the general case. 

Since an equation in right normal form can always be transformed into an equation 
in left normal form, and  vice versa, we can introduce a natural bijection between W 
and W, and between J and 1 It was shown in K N  that an element w,- 
( d j , a ,  -j,,+l)+n = 0 in WE takes the left normal form 

* n  - (a ,  j n  a, - j ,  - i 1 +n = 0 
- - -  

where 
- 7" = l / j n  j ,  - = l l j ,  -1  CL, =j,+,. (3.5R) 

Similarly W, - ( d U T n d L  - J n - l ) $ n  = O  can be put into the form U', - (dcj,a, -jntl)lCln = 0, 
where 

- 
j ,  = 1 I . L  = 11jn71 +n = J n C L n  

If we define the mutually inverse bijections 

R,. : W + W :  { w,ln E Z }  + { W n l n  E Z }  

R,, : W +  W :  {*,In E Z }  + { w,ln E Z }  

(3.5L) 

(3.6R) 

(3.6L) 

with (3.5) holding, then the nth element of R, (  w )  is the left normal form of the (right 
normal form equation) w,, and correspondingly for R,,. The identification of j, with 
w,, and jn with W,, induces the bijections 

(3.7R) 

(3.7L) 

We will call the image of j under R, the reciprocal sequence of j and for 7 in .i, &(,(J) 
is the reciprocal sequence of 

It should not be forgotten that given an element of LSWE its representatives in WE 
and are not uniquely determined, as has been carefully discussed in K N .  This 
need not concern us here as far as putting equations into normal form is concerned, 
as our formal development in this section has referred exclusively to equations already 
in normal form. The shifting of equations from one normal form to the other, which 
concerned us in the last paragraph, is also immune to ambiguity due to the condition 
j , j ,  = 1 which was implicitly imposed in deriving (3.5). It should be explicitly pointed 
out that the integrity of the substitution sequences, which are central to this work, 
would be destroyed if 'gauge' transformations were performed on some of their elements 
but not others. A definition of such transformations for substitution sequences as a 
whole could be formulated, but is not essential here and will be omitted. 

Everything that we will need in order to establish, in § 4, the bijections B :  M + W, 
B :  M + W is now in place, but for the sake of the application to be carried out there 
we must explain the relationship discovered by Kundt and Newman (1968) between 
the substitution sequences and the characteristic propagation property. For concrete- 
ness suppose we consider a wave equation in right normal form wo and its left normal 

R, : J -$J: { j ,  In E Z }  + { l/j, In E Z }  

R, : J+ J : {;,In E Z }  -$ { l / y , , l n  E z } .  

- 
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form ‘equivalent’ WO, and let us assume that w = { w,ln E Z }  in W double terminates, 
i.e. that for some M < 0, l / j M - ,  = 0,  and for some N > 0, j N i ,  = 0. It is clear that this 
is equivalent to the double termination of R,,(w) = {%“In E Z }  since Y M - ,  = 1 / j M - ,  and 
l / j N + l  = j N + , .  Now from j N + ,  = O  we have 

- 

( a , j N a , ) $ N  =O+(LN = a i U )  (3.8R) 
- 

while from j M - ,  = 0 we have 

( a u J M  au)&,., =o+cLM = b i u )  (3.8L) 

where a and b are sufficiently differentiable arbitrary functions. But using (3.8R) with 
(3.2R) yields 

while using (3.8L) with (3.2L) gives 

(3.9R) 

- 1 j - ,  j - r  J& 40=7a,7a,7. . . a,, a,( J M b ) .  
J - I  J - r  J - 3  J M  

(3.9L) 

But then w O - ( a , , j o a ,  - j , ) & = O  is solved by &, and by according to (3.5L), SO 

that the general solution of is given by t)o+JOJO. Equivalently, the general solution 
of *n is given by j O $ O + J O .  But the support of $0 with respect to the coordinate U is 
clearly no greater than that of a(  U), while the support of Go with respect to U is clearly 
no greater than that of b( U). It easily fol;ows that wo and (Bo) have the CPP. We thus 
have the general result that a doubly terminating substitution sequence w corresponds 
to a wn with the CPP. Actually every element w, in W obviously has the property and 
it is a property of the sequence w and of course of R,( w)). Similar statements apply 
if we begin with a doubly terminating B in % 

Suppose we have a M’ in W that merely terminates to one side, say to the right. 
Half of the preceding argument will apply yielding ‘one half  of a general solution 
consistent with the CPP, but the valid implication that W also terminates to the right 
yields a solution to BO, and thus to wo, in which the derivatives of (3.9L) are replaced 
by integrals. This is not consistent with the CPP. Of course, if w terminates to neither 
side the CPP is entirely lost. Thus it is likely that double termination is essential for 
the CPP. Of course, this discussion applies directly only to equations in a normal form, 
i.e. to elements of WE or  W. It is, however, made clear in K N  that elements in LSWE 

have the CPP if and only if their representations in WE and have it. Thus the 
criterion just obtained extends to the set LSWE. 

Before proceeding to search :or all doubly terminating substitution sequences a 
few remarks are in order concerning the contents of this section and K N .  The formal 
development given here differs from that in K N  in several respects. First of all we have 
found it useful to introduce somewhat more notation than they did. This is primarily 
because we have distinguished between left and right substitution sequences, which 
they did not. Our reason for doing this was to prevent those elements of sequences 
indexed by a 0 from appearing to have a significance that they d o  not have. The latter 
point was of particular concern to us because the bijections B : M -* W, B :  M - %’ to 
be defined in § 4 will involve entire substitution sequences, with no special status 
attributed to any one element. 
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4. The bijections between M ,  and W and W 

The set of motions of the infinite Toda lattice of strings, M ,  comprises the set of 
sequences of functions {yJn E Z }  subject to (2.6). Similarly, the finite sequences of y ,  
subject to (2.7) and (2.9) are the particular motions for the finite Toda lattices of strings 
with end strings free. It is convenient to let 

M = {{Yn I n E (4.1) 
include both types; the distinction between the infinite and finite lattices will be clear 
from context. 

have been divided into sets of equivalence 
classes W and W and each equivalence class w in W, or W in W, can be identified by 
means of w, - j,, W,, -in, with the sequence of functions {j,ln E Z } ,  or {JJn E Z} ,  
subject to (3.2R) and (3.2L), respectively. Let us define related sequences {cr,ln E Z} ,  

j n t l l j n  = exp(-o,) (4.2R) 

j n l j n + ,  = exp(-C,,). (4.2L) 

The wave equations of WE and 

{Cnln E 2)  by 

- -  

It follows from (3.2R) that 

&,U,, = - [ -exp( 
Similarly it follows from (3.2L) that 

+ 2 exp(-cr,) - exp( - U , + , ) ] .  (4.3 R) 

$,,a, = - [ - e ~ p ( - 5 , - ~ )  + 2  exp(-6,) -exp(-c~,+,)]. (4.3L) 

It is immediately clear, from inspection, that the U, satisfy the same equations as d o  
the r, of (2.6) and that the j ,  therefore satisfy the same equations as d o  the y ,  of (2.5). 
Consequently the bijection 

(4.4R) 

carries any motion on the Toda lattice of strings to a substitution sequence of j and 
(equivalent) w, and vice versa, where from (4.2R) we may take 

j ,  = exp(-y,) n E Z. (4.5R) 

B :  M - ,  W :  {y,ln E Z } +  { j J n  E Z } +  {w,ln E Z }  

Similarly, if we define 

B :  M -, W :  {yJn E Z }  + { J,ln E Z }  -, {*,In E Z }  (4.4L) 

it carries any motion on the Toda lattice of strings to a substitution sequence of 
(equivalent) W ,  and vice versa, where from (4.2L) we may take 

and 

J" = exp(y,) n E Z. (4.5L) 
The preceding rests on the fact that the 5, also satisfy (2.6), while (3.2L) differs 

from (3.2R) in such a way that there is a sign difference between (4.5R) and (4.5L). 
The properties and some applications of (4.4) and (4.5) will concern us in the remainder 
of the paper. 

One general property is immediate. Suppose y = {ynln E Z }  in M is carried by B 
to {w,ln E Z }  in W and thus via w, - j ,  to {exp(-y,)ln E Z }  in J.  Then the same y is 
carried by B to the reciprocal series {exp(y,)ln E Z }  in 1; in terms of wave equations 
the corresponding nth elements w, = B(y , )  in WE and W ,  = B(y,)  in are right 
and left normal forms of one another. Further properties will be germane to the 
calculations in subsequent sections. 
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5. All doubly terminating substitution sequences 

It was established in § 3 ,  following K N ,  that an element in LSWE has the CPP if its 
representative in WE (or equivalently in WE) generates a doubly terminating substitu- 
tion sequence, and it is likely that the converse holds. But such a sequence is defined 
by l / j M - ,  = O  for some M < O  and j N + ,  = 0 for some N > 0, in the notation of 0 3. 
According to (4.5R) this means y N + ,  = - y M - l  = SOC, which is precisely a motion on a 
Toda lattice of M + N + 1 strings with the end strings free, according to § 2. I f  we 
index so that M = 1 ,  the motion is given by y l ,  . , . , y ,  satisfying ( 2 . 7 )  and ( 2 . 9 ) .  But 
the set of all such y , ,  . . . , y ,  is exactly what is given by ( 2 . 2 0 ) .  In terms of the j ,  the 
most general sequence of the form 1/0,  j l ,  . . . , j N - l ,  j , ,  0 is thus given by 

j l  = - [Po( )*o( u ) I - ' A l  X N  - i / A o X N  - I 

j ,v  = (-  1 1 [Po( )*n( 11- A N X N  -  AN - 1  X N -  I 

where X N - ,  is defined in terms of 2 N  - 2  arbitrary one-variable functions by (2.16). 
It seems worth emphasising that the arbitrary functions cpo(u), YJu), which were 
injected into ( 2 . 2 0 )  by a transformation, can similarly be eliminated from (5.1) by a 
transformation. The remaining degrees of freedom in ( 2 . 2 0 ) ,  p,,. . . , c p h 8 - , ,  
V I , .  . , , parametrise in a non-trivial way a remarkably wide class of wave 
equations with the CPP. 

6. Specialisation to self-adjoint wave equations 

It is now necessary to return, briefly, to the general formalism laid out in P 3. Given 
an element j = { j , l n  E Z }  in J let us define its adjoint by 

Ad:  J + J :  { j , ln  E Z }  + { y , l n  E Z }  (6.1R) 
- 

with j ,  = j - " ,  and similarly 
- 
Ad:  J+ J :  { Y J n  E Z } +  { j J n  E Z }  (6.1L) 

where j ,  = j - , , .  The above definitions appear to give some special status to the element 
in a sequence indexed by 0, but no special status is intended. Now, however, we define 
a sequence j or J to be self-adjoint when 

- 

Ad(j )  = R j ( j )  

Ad( j )  = Rj( i) 
j - ,  = l/j, 

j - ,  = l / j ,  
- -  

respectively. This definition means that 

j o =  1 j n  = l/j-,, 

To= 1 j ; l=  l / j-n 

(6.2R) 

(6.2L) 

(6.3R) 

(6.3L) 

which certainly does single out the elements jo in j and in 1 But it is easily checked 
that, as stated in K N ,  (6.3R) is equivalent to wo- (d , j ,d ,  - j l ) ' P n  = 0 being a self-adjoint 
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wave equation, and likewise for (6.3L). It is clear that other w, in w are not self-adjoint 
in this case, although they are special in that they are 'Darboux equivalent' to a 
self-adjoint equation w,; similar remarks hold with reference to 9, and 9. 

In the particular case where we ask for substitution sequences that are doubly 
terminating and self-adjoint we can index so that the sequence takes the form 

l / O , j - f i . .  . ,LI, l , j l , .  . . ,j, 0 (6.4) 

where, of course, j-, = l/j, .  It is far from obvious how (5 .1 )  is to be specialised to 
achieve (6.4). However this case was worked out by Torrence (1986), by using 
non-trivial results on (2.14)-(2.16) obtained by Leznov (1980). It turns out that 

j, = ( - i ) p - l ~ p - l ~ p / ~ p ~ p  

j, = ( - 1 P - n  A,-,x,/ A p -  ,+ , xP 

where 

and 

. . .  

L'2P-2  U 2 P - l  

X I  'P2dUZP-I 5 9IdV2P 

with j-, = l /j ,  generating j - l , .  . . , j-, from (6.5). 
The image of the self-adjointness of a substitution sequence J = { w,ln E Z }  under 

B-' is obvious and physically simple. According to (4.5) jo= 1 corresponds to yo= 0, 
i.e. to a fixed string, and j, = l / j - ,  corresponds to y ,  = -y-,. Thus a self-adjoint 
substitution sequence corresponds to a motion of the Toda lattice of strings that is 
antisymmetrical about a fixed string. If we add the requirement of double termination, 
i.e. free end strings, then clearly we must have an  odd number of strings with the 
middle string fixed. 

Note that 'gauge freedom' of the type given by (2.19) is inapplicable as it would 
lead to a violation of j,= 1 ,  and it is for this reason that the functions 'Po(u),  V 0 ( v )  
that appear in (2.20) play no role in (6.5)-(6.7). 

7. Conclusion 

It was suggested by Torrence (1986) that those elements of LSWE with the CPP are the 
natural candidates to be called non-dispersive wave equations. That suggestion was 
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made in the context of the set of self-adjoint wave equations, but it seems equally 
appropriate in the more general setting of 9 5. In this sense, the maps defined in 9 4 
have been applied in 9 5 to find probably all non-dispersive linear wave equations in 
1 + 1 dimensions. Regardless of the acceptability of the suggested definition, the CPP 

is well defined, and clearly a significant property for a wave equation to have, and to 
delineate the class as constructively as was done in 9 5 seems well worthwhile. 

It is actually quite possible that the results of § 4 have much more to offer. Among 
the various Toda lattices and  their motions are a variety of well structured special 
cases. For example, the periodic Toda lattices d o  not correspond under B to wave 
equations with the CPP, but they d o  correspond to a very restricted family of wave 
equations and it would be of interest to know what distinguishes them, as wave 
equations, from other elements of LSWE. In addition, there are special motions on 
some Toda lattices, for example motions described as solitons. Do these motions map 
under B to wave equations of special interest? Reversing the process, one might 
consider elements of LSWE that are special as wave equations, put them into a normal 
form, generate a substitution sequence and map it by B-' to a particular motion on a 
particular Toda lattice. A particularly interesting question along these lines concerns 
the images under a generalised B-' of higher-order wave equations of various types. 
These many questions are under active investigation. 
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